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Today AI Models...

https://epoch.ai/data/notable-ai-models 2

Large amount of computing power and memory needed!

https://epoch.ai/data/notable-ai-models
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The Need for Distributed AI (Deep Learning)

■ It’s impossible to train recent AI models on a single GPU/Node
– Computational power restrictions: Faster training time

– Memory constraints: Large models

■ HPC resources

■ Distributed AI
– New challenges: Communication 

between GPUs

https://leonardo-supercomputer.cineca.eu/hpc-system/ 3
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Distributed DL and Communication between GPUs

■ NCCL (Nvidia Collective Communication Library)
– The Central piece of software for distributed DL training

– Handles inter-GPU communication
● Can be inter and intra-node communication

https://developer.nvidia.com/nccl
4
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NCCL Parameters

■ Algorithm: Ring, Tree,...

■ Network: Infiniband, Ethernet

■ Protocol: LL, Simple,...

■ Network Interface selection

■ NVLink vs Socket

■ …

■ Around 90 parameters!

Tree Algo Ring Algo

These configurations are not well-tuned for each application or compute cluster!

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/ 5
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Tuning NCCL Parameters: The potential

Results on 64 GPUs of Leonardo Supercomputer

6

■ ncclAllreduce
– 64 Nvidia A100 GPUs
– Algorithm, Protocol: Tree,Simple

vs

– Default

■ Default configuration is not well-
tuned for algorithm and protocol for all 
message sizes



Exploring NCCL Tuning Strategies for Distributed Deep Learning | AsHes 2025 7

Our Approach to Tuning NCCL
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Tuning NCCL Parameters: Approach

8

■ Profiling the communications while 
training of deep learning models

■ Filtering NCCL parameters
– Excluding the irrelevant ones
– From 90 to 45

■ Tuning: 
– Offline tuning (Bayesian optimization)

– NCCL Micro-benchmark

– For each message size and collective, 
30 minutes of tuning
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Experimental Evaluation

- https://www.nesite.com/en/technopole-bologna-in-the-heart-of-supercomputing-with-leonardo/

- De Sensi, Daniele, et al. "Exploring gpu-to-gpu communication: Insights into supercomputer 
interconnects." SC24.

■ Results on 64 GPUs of Leonardo Supercomputer @CINECA
– 16 nodes (4 GPUs per node)

■ Experiment 1: Micro-benchmarking collectives: Tuned vs Default

■ Experiment 2: Performance translation of tuned collectives to DL training
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Experiment 1: Tuning NCCL in Micro-benchmarks

At most: 
112x improvement

At most: 
36x improvement

10

■ Default vs Tuned (30 min for each message size)
■ Results on 64 GPUs of Leonardo Supercomputer
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Experiment 2: Profiling Communication in 
Distributed Deep Learning

■ Step 1: Profile to find dominant collective and message size
– Tune NCCL for them

11
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Experiment 2: Tuned vs 
Default  in DL Models 7.2x

12.5%

12

■ Step 2: Tune for the dominant 
message size using micro-
benchmarks

■ Step 3: Use tuned NCCL 
configurations in the distributed 
DL training

■ Even a small improvement in an 
epoch can highly impact long-
running AI trainings



Exploring NCCL Tuning Strategies for Distributed Deep Learning | AsHes 2025

Summary and Conclusion

13

Thank you for your attention

Majid Salimi Beni, Ph.D.

Researh Group of Parallel Computing

Faculty of Informatics

TU Wien, Austria

Reach me at:

majid.salimibeni@tuwien.ac.at

■ Tuning potential of NCCL parameters
– For different target systems 

– Different collective operations

■ Tuning NCCL accelerates DL training 

■ Future work:
– Statistical methods: Identify the most important 

parameters

– Tuning NCCL for LLMs training 

We thank EuroHPC JU for providing access to HPC resources!
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Backup 1 : Distributed AI (Deep Learning) Time

https://apxml.com/posts/training-cost-deepseek-v3-vs-llama-3
15
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Backup 2: Distributed AI (Deep Learning)

Only suitable if model and 
mini-batches fit in the GPU 
memory

Reduced memory 
requirements → can 
train (very) big models

Dean, Jeffrey, et al. "Large scale distributed deep networks." Advances in 
neural information processing systems 25 (2012). 16
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Backup 3: Distributed DL and Communication 
between the GPUs

Data Parallel

AllReduce: Synchronizing Gradients in Data 
Parallel Training (summing them).

Each GPU receives the final averaged gradient 
and updates its model.

https://www.nvidia.com/en-us/on-demand/session/gtc24-s62129/

Model Parallel

AllGather: allows each GPU 
to gather parts of tensors 
from other GPUs and 
assemble them into a full 
tensor.

Broadcast – Distributing Model Weights to All GPUs

17


	Musterpräsentation (Folienlayout „Titelfolie mit Bild“)
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

