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Abstract—The communication overhead in distributed deep
learning caused by the synchronization of model parameters
across multiple devices can significantly impact training time.
Although powerful GPU-GPU communication libraries, such as
NCCL, are available, their default configurations have not been
effectively adapted to varying hardware and workloads, which
can result in lower performance.

In this paper, we explore the tuning potential of NCCL and
present an approach to tuning its parameters for distributed
deep learning workloads. We identify efficient parameter con-
figurations through an optimization process that explores the
solution space defined by performance-related NCCL param-
eters. Experimental results on the Leonardo supercomputer,
utilizing up to 64 GPUs, show significant performance improve-
ments across micro-benchmarks and three deep learning models.
For ncclAllReduce and ncclAllGather, we improved the
bandwidth by factors of 112× and 36× in micro-benchmarks,
respectively. The tuned NCCL parameter configurations reduced
the training time of the models by up to 12.5%.

Index Terms—NCCL, Parameter Tuning, Collective Commu-
nications, Deep Learning, Multi-GPU

I. INTRODUCTION

Deep Learning (DL) models require a significant amount of
computational resources on multi-GPU clusters to be trained
in a reasonable amount of time, even on cutting-edge GPUs.
Current DL models with billions of parameters are too large to
fit into the memory of a single GPU [1]. Therefore, distributed
deep learning has become an essential approach, utilizing
several GPUs and compute nodes to distribute the data, the
model, or both. While distributed DL enables processing very
large models, new challenges arise, as the communication
overhead can severely impact training times [2], e.g., the time
for model parameter synchronization can be as high as 90 %
of the overall training time [3]. Collective Communication
Libraries (CCLs) such as NVIDIA Collective Communications
Library (NCCL) and ROCm Communication Collectives Li-
brary (RCCL) facilitate communication across multiple GPUs
and nodes by providing efficient collective operations such as
all-reduce and all-gather.
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Fig. 1: Proposed strategy for tuning NCCL parameters and
improving distributed deep learning performance.

CCLs provide several environmental variables that can be
adjusted to enhance performance for specific workloads and
hardware configurations. These parameters can be used, for in-
stance, to select optimized collective algorithms (e.g., tree- or
ring-based), communication protocols and channels, network
transport, communication helper threads, and more, to improve
hardware and topology awareness. Taking into account the
underlying topology, NCCL employs built-in heuristics to
select an effective combination of algorithms (NCCL_ALGO)
and protocols (NCCL_PROTO). However, default parameter
configurations of CCLs often fail to achieve the best perfor-
mance on real-world hardware and workloads. Therefore, they
should be tuned for hardware architecture, network, topology,
and workload [4], [5].

In this paper, we explore the potential performance im-
provements that can be achieved by tuning NCCL parame-
ters. As shown in Fig. 1, we first identify relevant message
sizes and collective operations in DL models. Then, we
filter performance-critical NCCL parameters and initiate an
optimization process to obtain tuned configurations, which are
later shown to reduce the training time of DL models.
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Our contributions are: 1) An analysis of performance-critical
NCCL parameters and their possible values. 2) A tuning strat-
egy that combines an optimizer and a micro-benchmark to find
tuned parameter configurations. 3) An experimental analysis
of the proposed strategy and its impact on the training time of
three DL models on 64 GPUs of the Leonardo supercomputer.

II. RELATED WORK

The tuning of communication libraries in HPC has been
an active research field. At the MPI (Message Passing Inter-
face) level, several online and offline tuning strategies have
been proposed [6], [7], [8]. Similarly, research on optimiz-
ing GPU-GPU communication has explored designing micro-
benchmarks [9], developing new collective algorithms [10],
[11], and selecting topology-aware collective algorithms for
efficient GPU-GPU communication [4].

Other works [12], [13], [14] proposed different ways of
synthesizing collective algorithms and generating topology-
and hardware-aware collective algorithms that are tailored to
the underlying hardware. Kim et al. [5] focused on PCIe-
based GPU clusters and proposed a methodology that includes
a profiling phase to identify the best paths for collective
operations and to utilize the optimal paths through NCCL.

The works previously mentioned have explored different op-
timization potentials for CCL libraries, specifically focusing on
the collective algorithm selection and design according to the
available hardware. While selecting an effective algorithm for
the collective operation and choosing an optimal communica-
tion path can significantly enhance performance, other NCCL
parameters, such as network and thread configurations, are
often overlooked and typically remain at their default settings.
Although these parameters have been shown to enhance the
performance of CCL libraries [15], the magnitude of their
performance impact is still unexplored.

III. NCCL TUNING METHODOLOGY

We present our approach to explore the potential of tuning
the NCCL environment variables to enhance the performance
of distributed training of deep learning. To that end, we devise
a tuning strategy composed of the following steps: filtering of
NCCL parameters, profiling of deep learning models training,
and offline tuning using a micro-benchmark.

A. Filtering of NCCL Parameters

According to the NCCL documentation (as of January
2025), 90 environment variables are exposed and can be
used to control the behavior of the library. The first step
in our strategy is to manually identify performance-related
parameters that can be tuned to improve the bandwidth of the
collective communication operations. As a result, the number
of tunable parameters was reduced to 45. Additionally, we split
the parameters according to their applicability to inter- and
intra-node scenarios. Ideally, the number of tunable parame-
ters could potentially be smaller to reduce the search space.
However, we adopted a conservative approach to ensure that
no important parameters and their interactions are overlooked.

B. Profiling the Training of Deep Learning Models

Since the training of various DL models may involve
different collective operations and message sizes, we need to
determine those with the biggest impact on runtime. Using
NCCL’s debugger, we profile 10 training epochs of each model
to identify the most frequently used collective operations and
message sizes.

C. Offline Tuning of NCCL Parameters

The last step in our strategy is to tune the NCCL parameters.
Given the set of performance-related parameters, the target
collective operation, and the message size, we use a Bayesian
optimizer [16] to find a better configuration. These optimizers
are known to be efficient in exploring the solution space and
finding a better configuration in a limited number of iterations.

In the optimization process, different configurations are
generated by the optimizer. Each configuration consists of a
specific allotment of values of the performance-critical NCCL
parameters. To determine the bandwidth of the collective
operation, the set of NCCL parameters is forwarded to a
micro-benchmark. This micro-benchmark runs that collective
for a given number of iterations and computes the bus band-
width according to NCCL’s documentation. At the end of the
optimization process, the best configuration is saved for later
use in the model training.

IV. EXPERIMENTAL RESULTS

We carried out experiments on the Leonardo supercom-
puter in CINECA, Italy. Each node has 32-core Intel Ice
Lake Xeon 8358 processors and four NVIDIA Ampere A100
GPUs. Intra-node communication uses NVLink 3.0, providing
200 Gbit/s between each pair of GPUs. Inter-node commu-
nication is provided by NVIDIA Infiniband HDR with a
Dragonfly+ topology, organized into 23 groups, forming a 2-
level fat tree, which provides a 100 Gbit/s bandwidth per port.

Related to software, we used Open MPI v4.1.4, CUDA 11.8,
NCCL 2.19, Horovod 0.26.1 [17], and TensorFlow 2.10.0.
For the Bayesian optimizer, we used Optuna v4.1.0 [18]
with a Tree-Structured Parzen Estimator [16] sampler. The
DL models used in the experiments are DenseNet121 [19],
EfficientNetB0 [20], and NasNetMobile [21].

A. Impact of NCCL Parameter Tuning on Micro-Benchmarks

We applied our tuning strategy to a range of message
sizes to evaluate the performance of the tuned and default
configurations of the NCCL parameters for ncclAllReduce
and ncclAllGather. For each message size and collective,
we ran the optimizer for 30 minutes to explore the parameter
space and find a better configuration. During that time, 200 to
300 configurations were evaluated by the micro-benchmark.

As shown in Fig. 2, tuning NCCL parameters has a high
potential to improve performance for inter-node communica-
tion, especially for message sizes smaller than 64 MiB. For
ncclAllReduce and message size of 16 KiB (cf. Figure 2a),
the tuned bandwidth is 0.09 GiB/s

0.0008 GiB/s ≈ 112× higher than the
one with the default configuration. For ncclAllGather,
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Fig. 2: Relative bandwidth in micro-benchmarks comparing tuned and default configurations. Raw bandwidths (GiB/s) are
shown for the tuned (black) and default (red) configurations. Experiments on 16 nodes (64 GPUs). Higher is better.
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Fig. 3: Number of calls to ncclAllReduce after 10 training epochs as reported by NCCL for three deep learning models.

tuning the NCCL parameters led to a 36× higher bandwidth,
in the best case (128 KiB, see Figure 2b). For larger messages,
finding a better configuration than the default may require
further exploration in the solution space, suggesting that
NCCL is already well-tuned for these message sizes.

We also explored the tuning potential for intra-node com-
munications on a single node of Leonardo (4 GPUs, not
shown in the figures), achieving smaller improvements. In
micro-benchmarks, the bandwidth was increased by 18 % for
ncclAllReduce with 8 MiB, and by up to 7 % in the rest
of scenarios. On a single node, the GPUs are fully connected
via NVLink, and fewer parameters are involved, hence, there
is limited room for significant performance gains.

B. Impact of NCCL Parameter Tuning on Training DL Models

As mentioned in Section III, prior to the tuning, we
should identify the most representative operations and mes-
sage sizes for each model. Figure 3 shows the histogram
of calls to NCCL collectives in the profiling phase. In all
cases, ncclAllReduce is the most frequent operation, and
the most relevant message sizes are 13.3 MiB, 7.7 MiB, and
8.1 MiB for DenseNet121, EfficientNetB0, and NasNetMobile,
respectively. NasNetMobile requires the highest number of
collective calls, 3301 in total, while DenseNet121 and Effi-
cientNetB0 have only 393 and 206, respectively.

These message sizes serve as input for the optimization
process that finds the tuned configurations. Figure 4 com-
pares the default and tuned configurations in the micro-
benchmarks and the speedup per training epoch. In micro-

benchmarks (see Fig. 4a), we improved the bandwidth by
3.3×, 5.5×, and 7.2×, for the most relevant message sizes
of DenseNet121, EfficientNetB0, and NasNetMobile, respec-
tively. These improvements led to per-epoch training time
reductions of 10.2 %, 5.6 %, and 12.5 %, respectively, as shown
in Fig. 4b. The NasNetMobile improvement is bigger than for
the other models primarily due to its higher communication
intensity, with message sizes of approximately 8.1 MiB, which,
as shown previously, have high tuning potential. DenseNet121
and EfficientNetB0 require longer training times per epoch
than NasNetMobile, despite the smaller amount of commu-
nication, suggesting that their communication-to-computation
ratio is lower and, consequently, their room for improvement.

V. CONCLUSIONS

In this paper, we explored the potential benefits of tuning
NCCL parameters on distributed deep learning workloads.
Using Bayesian optimization, we tuned NCCL’s collective
operations. For intra-node communications, we observed that
bandwidth can be increased by up to 18 %. For inter-
node communications, the gains were bigger, reaching up to
112× and 36× higher bandwidth for ncclAllReduce and
ncclAllGather, respectively. Applying the tuned NCCL
parameter configuration to the training of deep learning mod-
els, we reduced the per-epoch training time by up to 12.5 %.
For future work, we plan to identify statistically significant
parameters to narrow the search space and improve the op-
timization process by using heuristics to prioritize either the
exploration or exploitation of key parameters.
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Fig. 4: Comparison of the bandwidth in micro-benchmarks and speedup per training epoch for default and tuned configurations.
Raw bandwidths (GiB/s) and training times (s) are shown over the bars. Experiments on 16 nodes (64 GPUs). Higher is better.
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