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Abstract—The Message Passing Interface (MPI) is a program-
ming model for developing high-performance applications on
large-scale machines. A key component of MPI is its collective
communication operations. While the MPI standard defines
the semantics of these operations, it leaves the algorithmic
implementation to the MPI libraries. Each MPI library contains
various algorithms for each collective, and selecting the best
algorithm typically relies on performance metrics obtained from
micro-benchmarks. In such micro-benchmarks, processes are
typically synchronized using an MPI Barrier before invoking a
collective operation. However, in real-world scenarios, processes
often arrive at a collective in diverse patterns, often due to
resource contention. The performance of collective algorithms
can vary significantly depending on the arrival pattern type.

In this work, we address the challenge of selecting the most
efficient algorithm for a given collective, taking into account
process arrival patterns. First, we demonstrate through a simula-
tion study that arrival patterns significantly influence the choice
of the optimal collective algorithm for specific communication
instances. Second, we conduct a comprehensive micro-benchmark
analysis to illustrate the sensitivity of MPI collectives to these
arrival patterns. Third, we show that our innovative micro-
benchmarking methodology is effective in selecting the best-
performing collective algorithm for real-world applications.

Index Terms—Message Passing Interface (MPI), Algorithm
Selection, Library Tuning, Process Arrival Patterns, Collective
Communication Operations

I. INTRODUCTION

The Message Passing Interface (MPI) and its collective op-
erations play a pivotal role in the domain of high performance
computing. MPI provides an efficient way to exchange data
between processes distributed across a network in an HPC
cluster. MPI collectives encompass essential communication
patterns such as one-to-all (broadcast), all-to-one (reduce), all-
to-all, scatter, and gather.

The MPI standard defines the semantics of collective op-
erations, but leaves their algorithmic implementations to MPI
libraries. Hence, MPI libraries provide several algorithms for
each collective operation, and a decision logic selects one of
these algorithms. Each algorithm has its distinct characteristics
in terms of message size, network usage, and scalability. Based
on the scenario, one algorithm may outperform the others for
each collective operation, and therefore, selecting the right

tion efficiency, or resource utilization of a parallel application.
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Fig. 1: Avg. process delay (skew) across all MPI_Alltoall
calls in FT on Galileo100 with 32× 32 processes.

For that reason, a large body of related work exists, which
explores different ways of performing the algorithm selection
process, considering parameters such as the message size, the
number of processes, the network topology, or the cluster
utilization [1], [2], [3], [4], [5], [6].

In many MPI applications, processes typically do not enter
collective operations simultaneously due to system noise or
performance variability of HPC systems [7], [8], imbalanced
workloads [9], [10], or deficiencies of the current synchroniza-
tion methods [11].

Figure 1 demonstrates the actual process arrival patterns
as observed for the FT application of the NAS Parallel
Benchmarks [12]. To generate this plot, we recorded the times-
tamp of each process upon entering a collective, specifically
MPI_Alltoall. Each collective call is assigned a sequence
number, enabling us to calculate the delay of each process
relative to the first process to enter a collective. We then
calculate the average delay across all sequences. We can
observe that the average delay is not uniformly distributed,
indicating significant optimization potential.

The MPI process arrival imbalance is also shown to be
impactful when designing a new collective algorithm or select-
ing an existing algorithm for MPI collective operations [13],
[14]. Thus, a well-performing collective algorithm under a
balanced process arrival pattern may show poor performance
under an imbalanced process arrival pattern. Detecting actual

algorithm highly improves the overall scalability, communica-
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arrival patterns, however, is time-consuming and sometimes
infeasible since the arrival times may vary depending on the
cluster, network, number of nodes, network contention, or
application [14], [15]. Therefore, selecting robust algorithms
for MPI collectives, capable of accommodating various arrival
time imbalances and ensuring high performance across differ-
ent scenarios, is crucial.

In this paper, we show how arrival patterns can impact
the algorithm selection for collective operations, first in a
simulated environment using the SimGrid toolkit [16] and
second on a real parallel machine using micro-benchmarks.
We then present our novel strategy for selecting collective
algorithms based on their robustness against different arrival
patterns and show how this strategy can reduce the runtime
of parallel applications, such as FT from the NAS Parallel
Benchmarks [12].

Overall, we make the following contributions:
• We present a comprehensive simulation study demon-

strating that several MPI collective operations, particu-
larly rooted collectives like MPI_Reduce, are sensitive
to process-arrival patterns.

• We propose an innovative algorithm selection technique
that evaluates the performance of different collective
algorithms under various arrival patterns to identify the
most robust algorithm for specific message sizes and
process counts.

• We introduce a specialized MPI tracing tool designed
to accurately capture process arrival patterns in MPI
applications.

• Through a case study using the FT application, we
show that our algorithm selection technique, informed
by benchmarking under different arrival patterns, can
enhance application runtime across three different ma-
chines.

The rest of the paper is organized as follows: In Sec-
tion II, we state our working hypothesis and introduce the
notation used throughout the paper. Section III details our
simulation study to support our hypothesis and guide our
real-world experiments. Section IV presents our experimental
findings for real-world benchmark experiments, which align
with the simulation study. In Section V, we demonstrate that
micro-benchmarking using process-arrival patterns can indeed
enhance application performance. We summarize related ap-
proaches in Section VI and conclude the paper in Section VII.

II. BACKGROUND AND NOTATION

Here, we define our target metrics and provide a brief
overview of the scientific background.

A. Process Arrival Patterns

In the present work, we examine the performance de-
pendency of MPI collective operations on process arrival
patterns. The process arrival time is the time at which a
process enters a collective MPI operation. An arrival pattern
emerges from the difference in process arrival times between
participating processes. We consider a system with p MPI
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Fig. 2: Example of process arrival pattern with 8 processes.

processes P0, P1, ..., Pp−1. Each process Pi has its own arrival
time ai and exit (or finish) time ei. Figure 2 shows an
example of imbalanced process arrival times when executing
MPI programs, which illustrates that processes may arrive in
a collective at different times also finish at different times.
In case all processes enter a collective call simultaneously,
only the last process to exit defines the running time of the
operation. This is, in general, what a typical MPI micro-
benchmark, such as the OSU Micro-Benchmarks [17] or
ReproMPI [18], is measuring. The total delay d∗ denotes the
time difference between the first process arriving and the last
process exiting a collective call, i.e.,

d∗ = max
0≤i<p

(ei)− min
0≤i<p

(ai) . (1)

On the contrary, the total delay is less informative if arrival
patterns are present. For example, if a process was severely
delayed, the total delay would include the waiting time induced
by the process imbalance. Since the arrival pattern is an
external factor that we can hardly control, our primary goal
should be to minimize the time between the last process
entering and the last process exiting a collective call. The last
delay d̂ is defined accordingly, i.e.,

d̂ = max
0≤i<p

(ei)− max
0≤i<p

(ai) . (2)

B. Clock Precision and Clock Synchronization

In a typical parallel compute cluster, each compute node
has its own local clock, and these clocks are periodically
synchronized using some protocols to compensate for drifting
clocks. However, the accuracy of these clocks is often too low
for fine-grained measurements [19]. For inspecting the impact
of process arrival patterns on different collective algorithms, a
precise clock synchronization mechanism, called HCA3 [20],
is used in this paper to obtain a precise, logical global clock.
HCA3 can be used to obtain a precise logical, global clock by
synchronizing the clocks of MPI processes in a logarithmic



number of rounds. The global clock’s accuracy is less than
one microsecond [11], making it adequate for our purposes.

C. SimGrid and SMPI

SimGrid [16] is a versatile framework that facilitates the
simulation of HPC applications in virtual environments, en-
abling detailed analysis and performance modeling of dis-
tributed systems. Its SMPI module [21] can simulate actual
MPI applications on virtual, simulated platforms. It accom-
plishes this by intercepting communication calls and emulating
their actions while allowing the computations to execute as
they would on real systems. SMPI provides tracing features,
allowing users to monitor MPI collectives, to observe their
behavior and performance under different circumstances. It
also enables precise comparison of different algorithms for
collective operations, providing insights into their efficiency
and behavior on any arbitrary network configuration.

III. ASSESSING THE OPTIMIZATION POTENTIAL OF
COLLECTIVES VIA SIMULATION

To support our hypothesis that a specific process arrival
pattern impacts the performance of MPI collectives, we con-
ducted a simulation study using SimGrid. There are two
main benefits of using a simulator for such a study. First,
the simulations are free of system noise, and runtimes are
accurately reproducible. Second, all clocks in the simulator are
synchronized by design. Therefore, we do not need to employ
any clock synchronization algorithm for the simulations.

It is important to emphasize that the simulation results
are not meant to be a one-to-one representation of real-
world performance. Instead, they provide insights into the
optimization potential of MPI collectives when exposed to
different process arrival patterns.

A. Simulation Environment and Parameters

The SMPI module of SimGrid provides a large variety of
implementations of MPI collectives. For example, SMPI con-
tains implementations of some collective algorithms found in
Open MPI [22] or MVAPICH [23]. We obtained our simulation
results with SimGrid 3.35.

To demonstrate the performance of different algorithms for
collective operations under various process arrival patterns,
we utilized a simulation platform representing a cluster with
32 nodes. Each node comprises 32 cores and is connected
to a switch, forming a typical two-level hierarchical cluster.
The intra-node network has a bandwidth of 10Gbps and a
latency of 1 µs. The inter-node network also has a bandwidth
of 10Gbps but a latency of 2 µs, approximately reflecting the
values of our local Omni-Path-based cluster.

We experimented with several other platforms featuring
different bandwidths and latencies. However, the choice of
bandwidth or latency did not significantly impact the over-
all outcomes. The fastest algorithm in one setting generally
remained the fastest even when latency and bandwidth were
varied. Additionally, we simulated several rooted and non-
rooted collectives, anticipating that rooted algorithms would

Listing 1: Applying an artificial process arrival pattern.
for (i=0; i<NREP; i++) {
#ifdef SIMULATOR

double wait_time = get_arrival_pattern_delay();
usleep(wait_time);

#else
MPIX_Harmonize();
double skew_time = MPI_Wtime() +
get_arrival_pattern_delay();
while( MPI_Wtime() < skew_time );

#endif
double start_time = MPI_Wtime();
MPI_COLLECTIVE(...);
double end_time = MPI_Wtime();

}

exhibit greater sensitivity to arrival patterns compared to non-
rooted collectives. For the sake of conciseness, we only present
results for one rooted (MPI_Reduce) and two non-rooted
(MPI_Allreduce, MPI_Alltoall) collectives.

It is important to state how a specific process-arrival
pattern can be established. Several other works relied on
MPI_Barrier to synchronize processes and then waited for
a specific amount of time. However, synchronizing processes
using an MPI_Barrier may be very inaccurate for small
message sizes [11]. Therefore, we synchronize the processes
also in time by calling MPIX_Harmonize [11] and then wait
for a given amount of time. This method can accurately replay
certain process arrival patterns in a micro-benchmark scenario.
Listing 1 illustrates how an arrival pattern is established and
how the runtime of a collective call is measured.

Since all processes in the simulation already share the
same global clock, there is no need to synchronize using
MPIX_Harmonize. Instead, we can just wait until the exact
target time is reached before entering the collective call.

B. Artificial Process Arrival Patterns

To generate realistic process arrival patterns, we have
recorded a large number of program traces that capture the
start and end times of collectives (cf. Section V-A). We have
observed that identifying typical arrival patterns is challenging
because each application produces distinct patterns based on
the parallel machine, number of processes, or input size.
Therefore, we created eight artificial process arrival patterns
that encapsulate the general trends observed from our tracing
experiments. The various configurations of these patterns are
depicted in Figure 3. The magnitude of the maximum process
skew, displayed on the y-axis, consistently varies. For short-
running collectives, the maximum process skew will be smaller
compared to long-running collectives.

To generate a concrete process arrival pattern, we select one
of the shapes from Figure 3 and define a maximum process
skew (s) for this pattern, which defines the time between the
first and the last process exiting the pattern. Therefore, the
delay experienced by each process due to a specific pattern
ranges from 0 to s time units.

In the simulations and in the experiments shown later,
all process arrival patterns are generated before starting a
micro-benchmark. The generator takes the shape type, the
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Fig. 3: Visual representation of the shapes of various artificially created process arrival patterns.

number of processes, and the maximum process skew as
inputs and produces a file with p lines, where each line i
denotes the process skew of process Pi. In Listing 1, function
get_arrival_pattern_delay() returns the process
skew for process Pi.

For the simulations, we chose a specific maximum process
skew to create diverse process arrival patterns that affect the
collective call’s outcome. If the process skew in the generated
pattern is too small, there will hardly be a difference in the
runtime of various collective algorithms. In contrast, if the
process skew is too large, the runtime of a collective has
little impact on the overall execution time. For that reason,
we generated the arrival patterns with the following maximum
process skew s as follows: We ran all k algorithms of a specific
collective in the simulator and recorded their execution times
ti when there is no process skew, i.e., processes enter the
collective simultaneously. We compute the average runtime
over all algorithms for this collective call, which we call
ta = 1

k

∑k
i=0 ti. We then multiplied this average runtime

ta with three factors: 0.5, 1.0, and 1.5. Thus, we generated
patterns with three different maximum process skews for each
case, which are 0.5ta, 1.0ta, and 1.5ta. These three different
skews help us evaluate the impact of increasing or decreasing
this artificial process skew. In the present paper, we show only
results for the 1.5ta factor, as it had the strongest influence on
the results.

C. Simulation Results

Figure 4 presents our simulation results for three collectives
MPI_Reduce, MPI_Allreduce, and MPI_Alltoall.
We selected these collectives for presentation because they
best illustrate the optimization potential. The relative runtimes
displayed in each cell are based on the last delay metric (d̂).

We begin with the results of MPI_Reduce, displayed in
Figure 4a. The last row presents the relative performance
results for the no_delay case, corresponding to scenarios
where all processes are perfectly synchronized. The color
indicates the best algorithm found for a specific message
size. For example, ompi_binomial is the fastest for mes-
sage sizes from 2B to 256B, while scatter_gather
works best for larger message sizes. We now applied the
eight different process arrival patterns from Figure 3. Sim-
ilar to the no_delay case, we plot the best algorithm
found for each pattern and message size using the respective
color. Let us examine the row for last_delayed, where
ompi_in_order_binary is found to be the best. The

value inside each box denotes the relative performance of this
algorithm compared to the best algorithm from the no_delay
case. For example, for a message size of 2B, we know that
a decision logic based on the no_delay case would se-
lect ompi_binomial. However, our experiments show that
ompi_in_order_binary leads to a smaller value of d̂.
Thus, the cell shows the relative performance d̂ompi_in_order_binary

d̂ompi_binomial
,

which for 2B tells us that the ompi_in_order_binary
only requires about 30% of the time of ompi_binomial.
This simulation outcome aligns with our expectations, as a
delay in the last process directly results in an immediate delay
in the root process during the first communication round of a
binomial tree. This characteristic makes the binomial tree algo-
rithm particularly sensitive to process skew. Generally, it is ev-
ident that the optimal algorithm for MPI_Reduce varies with
different message sizes and process arrival patterns, demon-
strating the strong optimization potential of MPI_Reduce in
real-world scenarios.

Figure 4b presents the simulation results for
MPI_Allreduce, which is one of the most commonly
used collective operations [24]. We have tested the following
algorithms available in SimGrid: lr (logical ring reduce-
scatter followed by logical ring allgather.), rdb (recursive
doubling), rab_rdb (Rabenseifner’s algorithm using
recursive doubling), ompi_ring_segmented (ring
algorithm), and redbcast (reduce+bcast). When these
algorithms are exposed to different process arrival patterns,
the best algorithm is often the same as in the no_delay
case. This aligns with our intuition, as the reduction step
in an Allreduce is a strongly synchronizing sub-task, i.e.,
all processes must receive all buffers from every other
process before the result can be propagated back. However,
process skew can be absorbed during the reduction step if the
reduction algorithm can leverage the skew. This is evident
for certain process-arrival patterns (e.g., ascending or
last_delayed) with medium message sizes such as 256B
or 1024B.

Finally, Figure 4c shows the simulation results for
MPI_Alltoall. Here, the bruck algorithm consistently
outperforms the other algorithms in the no_delay case for
message sizes from 2B to 1024B. However, if bruck is
exposed to different process arrival patterns, the best algorithm
changes. For example, the last_delayed pattern favors
the basic_linear algorithm with small message sizes,
e.g., 2B or 4B. This indicates that the bruck algorithm is
sensitive to process-arrival patterns, and there is optimization
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Fig. 4: Simulation results of the best algorithm under various process-arrival patterns for different collectives, tested with 1024
processes on a standard cluster system consisting of 32 nodes, each equipped with 32 cores.

potential for MPI_Alltoall in real-world scenarios.
In summary, our simulations reveal significant optimization

potential for most collective operations, particularly rooted
ones like MPI_Bcast and MPI_Reduce, and even some
non-rooted collectives such as MPI_Alltoall. However, for
MPI_Allreduce, the impact of process-arrival patterns in
real-world scenarios suggests minimal potential for improving
the current algorithms in MPI libraries.

IV. ASSESSING THE ROBUSTNESS OF COLLECTIVES TO
ARRIVAL PATTERNS

We now present the results of our experimental study,
which assesses the robustness and performance of collective
algorithms under varying process arrival patterns, using the
same micro-benchmarking approach as our simulation study.

A. Hardware and Software Setup

Our experiments were conducted on three distinct parallel
machines, as detailed in Table I. We used the ReproMPI
benchmark suite [18] and HCA3 for clock synchronization
in our micro-benchmark experiments. The artificial process
arrival patterns employed are those shown in Figure 3. To
reproducibly create a specific process arrival pattern in the
micro-benchmark, we followed the method outlined in List-
ing 1. Specifically, we first synchronized the processes using
MPIX_Harmonize [11], and then each process waited until
its designated skew time.

Table II shows the mapping of existing Open MPI collective
algorithms to their IDs in our experiments. We omitted some

algorithms that only function with two processes or that
consistently underperformed across various message sizes.

B. Impact of Process Arrival Patterns on Choice of Collective
Algorithm

In the first set of experiments, we assess whether the simu-
lation findings hold true in practice. Specifically, we evaluate
whether the optimal algorithm for a given message size under
ideal synchronization remains the best under specific process
arrival patterns.

Figure 5 shows our experimental results with different pro-
cess arrival patterns on Hydra. For all real-world experiments,
we only present a subset of the original eight process arrival
patterns and message sizes for the sake of clarity. We selected
the most distinct process arrival patterns for the figures. The
values in each cell represent the last delay runtime (d̂) of each
algorithm for a specific arrival pattern.

Figure 5a presents the experimental results for
MPI_Reduce. Each row contains the runtime (in ms)
for one specific process arrival pattern. Consider, for example,
the top left plot, which shows the runtime results for 8B.
The maximum process skew s for these experiments is
determined as done in the simulation study. We first measured
the runtime of all algorithms for the No-delay case. Then,
we computed the average runtime across all algorithms (for
a specific message size) and used this value as input for
the process skew generator. The colored boxes separate the
algorithms into good (light blue) and less efficient (light red)
algorithms. A good algorithm is either the fastest or one that
is at most 5% slower than the fastest algorithm (which we



TABLE I: Characteristics of parallel machines used in the experiments.

Machine #Nodes Interconnect CPU/Cores per Node MPI Version

Hydra 36 (Dual-Socket Dell PowerEdge) Intel Omnipath (100 Gbit/s) 2 x 16-core Intel Xeon Gold 6130F Open MPI 4.1.5
Galileo100 554 (Dual-Socket Dell PowerEdge) Mellanox Infiniband HDR100 2 x 24-core Intel CascadeLake 8260 Open MPI 4.1.1
Discoverer 1128 (Atos BullSequana XH2000) Infiniband HDR (Dragonfly+) 2 x 64-core AMD Epyc 7H12 Open MPI 4.1.4

TABLE II: Algorithm IDs and their names in Open MPI 4.1.X.

Collective Algorithm IDs, Names and Abbreviations

Allreduce 2 Non-overlapping (Non-ovlp), 3 Recursive Doubling (Rec-Dbl), 4 Ring (Ring), 5 Segmented Ring (Seg-Ring), 6 Rabenseifner (Raben)
Alltoall 1 Linear (Lin), 2 Pairwise (Pair), 3 Modified Bruck (M-Bruck), 4 Linear with Sync (L-Sync)
Reduce 1 Linear (Lin), 2 Chain (Chain), 3 Pipeline (Pipe), 4 Binary (Bin), 5 Binomial (Binom), 6 In-order Binary (In-Bin), 7 Rabenseifner (Raben)

consider indistinguishable). Since experimental results may
vary a little, it is generally not useful to seek only a single
very best algorithm. In Figure 5a (left figure), we see that
Algorithm 5 (binomial tree) is found to be the best algorithm
in the No-delay case and 8B with on average a runtime of
0.01ms. For the same message size, we can also observe that
in the Last-delayed case, Algorithm 6 (in-order binary) is
the fastest algorithm, and unlike the binomial tree algorithm,
it can absorb some of the process skews. The experimental
results match our simulation results and our expectations.

For MPI_Allreduce in Figure 5b, however, a different
behavior can be observed, which also matches our simula-
tion results. Here, we see that the fastest algorithm in the
No-delay case consistently remains the fastest in most of
the other cases. We can also observe that several algorithms
perform equally well for the message size of 8B, which
explains the more frequent occurrence of blue rectangles.
Additionally, the runtimes of each algorithm across various
patterns are more consistent than those for MPI_Reduce,
showing little variation. Thus, similar to simulation results,
MPI_Allreduce is less sensitive to arrival patterns com-
pared to MPI_Reduce, demonstrating that most available
algorithms are robust against process imbalances.

For MPI_Alltoall, the process arrival patterns have less
impact on the algorithms for a small message size (8B), as
shown in Figure 5c, and the runtime of all algorithms remains
relatively stable across various patterns. For a message size of
1024B, however, there is more variance across different arrival
patterns, and the runtimes of the algorithms considerably
change by changing the arrival patterns. Here, the maximum
process skew is relatively high, as Algorithms 1 and 4 are
much slower than the other two in the No-delay case,
which translates into a larger process skew in the experiments.
In the Alltoall experiments, algorithms are very sensitive
to the shape of the process arrival pattern. For example,
Algorithm 4 (Linear with Sync) is the fastest for three delay
scenarios but is very slow for the First-Delayed pattern.
For MPI_Alltoall and a message size of 1 048 576B, a
very similar behavior is observed, where the runtimes of the
algorithms significantly vary based on the type of pattern.
Another observation is that choosing the fastest algorithm
when processes are synchronized (i.e., No-delay pattern)

might be totally misleading. For this message size, the fastest
algorithm for the No-delay scenario (Algorithm 2) is, in
fact, the worst choice for all other process arrival patterns.

As demonstrated by previous experiments, selecting algo-
rithms for MPI collectives is a challenging task for several
reasons. First, the optimal algorithm without process arrival
imbalances may not be the best under specific arrival pat-
terns; selection depends on the pattern encountered in the
application. This necessitates broadening our selection strategy
beyond just choosing the fastest algorithm based on synchro-
nized micro-benchmarks. Second, predicting actual process
arrival patterns for a specific application is challenging due
to factors like the application type, number of nodes, network
and topology, and network congestion. Therefore, assessing
the robustness of collective algorithms against various arrival
patterns, alongside their runtimes, is crucial to ensure overall
performance.

C. Assessing the Robustness of Collective Algorithms

Until now, we have demonstrated that choosing an efficient
algorithm for a specific collective heavily depends on the
arrival pattern type. Next, we aim to evaluate the robustness of
each algorithm against particular patterns, diverging slightly
from our previous analyses. Our focus is on identifying
algorithm classes that maintain high performance and effi-
ciency despite variations in process arrival patterns, defining
robustness as the ability to consistently deliver strong results
under these conditions.

In the previous section, we analyzed the runtime of differ-
ent algorithms for various process arrival patterns, and each
algorithm was exposed to the same magnitude for the process
skew. In the following robustness experiments, we create a
specific process arrival pattern for an algorithm as follows.
We obtain the running time ti for each algorithm i in the
No-delay case. For each algorithm i, we generate a specific
process arrival pattern based on ti, i.e., the shape is the same
but the magnitude changes. The idea is that an algorithm that
requires X ms should be given a process arrival pattern with
a maximum skew of X ms, while an algorithm that needs
10X ms should also be given a maximum skew of 10X ms.

The robustness results are given in Figure 6, which were
obtained on Hydra with 32×32 processes. We measure the last
delay d̂ and present normalized values for each arrival pattern.
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Fig. 5: Impact of arrival patterns on run-times of collective algorithms. Runtimes (in milliseconds) of MPI collectives for
various message sizes on Hydra and with 32× 32 processes. For each arrival pattern, algorithms within 5% of the fastest (per
row) are highlighted in light blue, while all others are in light red.

The normalized performance is defined as d̂k

d̂No-delay
− 1, which

denotes the speedup or slowdown of a collective algorithm
under pattern k compared to the No-delay case.

Consider the plot for 8B in Figure 6a. Negative values
indicate that the last delay metric for a pattern was smaller
than in the No-delay case, whereas positive values mean the
last delay metric was larger than in the No-delay scenario.
Values that are within 25% (either negative or positive) are
colored gray to signify that there is no significant impact on
this algorithm when being exposed to a process arrival pattern.
However, if values are smaller than −0.25, we use green boxes
to denote that the algorithm could significantly absorb process
skew for a particular arrival pattern. Red boxes represent
cases where algorithms get significantly slower (more than
25%) in the presence of an arrival pattern. For example,
we see in Figure 6a that Algorithm 1 makes the biggest
improvement (−0.564) in the Random case for 8B, hence

it is colored green.
Overall, Figure 6 confirms our previous findings. For

MPI_Reduce, most algorithms are sensitive to process arrival
patterns. However, if the pattern changes, it often improves
the performance rather than degrading it, as indicated by
the majority of green boxes. Therefore, most MPI_Reduce
algorithms are robust. For MPI_Allreduce, with 8B and
1MiB messages, most of the algorithms are less sensitive
to different arrival patterns. In contrast, with 1024B, Algo-
rithms 2 and 6 show poor robustness due to severe slowdowns
(red boxes). For MPI_Alltoall, a potential for optimization
is found for medium and large message sizes. Therefore,
in real-world applications dealing with such message sizes,
tuning MPI_Alltoall in the presence of process arrival
patterns should improve the overall application performance.
In the next section, we will demonstrate that this hypothesis
holds true in practice.
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Fig. 6: Robustness of collective algorithms against arrival patterns. Normalized runtimes of MPI_Reduce, MPI_Allreduce,
and MPI_Alltoall (w.r.t the No-delay case) on Hydra and 32× 32 processes. Green rectangles: at least 25% faster than
No-delay; red rectangles: at least 25% slower than No-delay.

V. IMPROVING APPLICATION PERFORMANCE BY PROCESS
ARRIVAL ANALYSIS

We demonstrate how to enhance the performance of the
FT application (problem size D) from NAS Parallel Bench-
marks v3.4.2 [12] by selecting the best collective algorithm
using our micro-benchmarking technique. This approach in-
volves analyzing each algorithm’s performance across various
process arrival patterns.

To understand arrival patterns on real production machines,
which may not match artificially generated ones, we trace
and analyze collective calls within MPI applications. This
approach allows us to develop arrival patterns based on real-
world scenarios and evaluate the robustness of algorithms
against these patterns.

A. Recording Arrival Patterns by Application Tracing

To study real-world arrival patterns, we developed a small
MPI tracing library using the PMPI interface of MPI. In
contrast to tracing libraries like Score-P [25], our library only

focuses on MPI collectives. More importantly, it synchronizes
the clocks before starting the tracer, which enables us to
measure process arrival patterns more accurately. The library
includes features for process and collective call sampling,
allowing only a subset of processes to be traced or every kth
collective call to be recorded. This approach is often sufficient
to gain an overview and helps reduce the size of the trace.

We traced the MPI_Alltoall calls in the FT application,
where Alltoall is the primary communication pattern, consum-
ing 50–70% of the total runtime, depending on the collective
algorithm used. In this application, MPI_Alltoall is the
dominant collective operation, accounting for over 95% of the
MPI operations’ time with a message size of 32 768B.

For each MPI_Alltoall call in the FT application, we
set the arrival time of the first process as time zero and
subtract the arrival times of all other processes from this
value. We apply this method to all MPI_Alltoall calls in
FT, ultimately calculating the average delay for each process
across all calls. This average skew per process over all calls in



each cluster is termed the FT-Scenario. Figure 1 illustrates
the average delay pattern of all MPI_Alltoall calls in FT
for all 1024 processes on Galileo100, clearly indicating that
some processes experience more delay than others.

B. Replaying Arrival Patterns from Applications in Micro-
benchmarks

We demonstrate how the process arrival pattern in an
application can affect the performance of collective algorithms.
To this end, we conduct an Alltoall micro-benchmark using
the same message size as the Alltoall calls in FT. Note that
the micro-benchmark uses the No-delay scenario, where all
processes enter the MPI_Alltoall function at the same
time (i.e., no arrival pattern is applied). Figure 7 shows
the runtime of FT and Alltoall on Hydra, Galileo100, and
Discoverer. We ran FT 10 times and reported the average run-
time. On Hydra (Figure 7a), when running the Alltoall micro-
benchmark (the bottom figure), Algorithms 1, 2, and 4 are
much faster than Algorithm 3, and for instance, Algorithm 4
is about four times faster than Algorithm 3. However, when
using the same Alltoall algorithms in FT (the figure above),
we see a totally different picture. Unlike the micro-benchmark,
choosing Algorithms 1 and 4 would not be the best choice for
FT. In fact, the behavior of algorithms varies between running
in the micro-benchmark and within the application.

Likewise, on Galileo100, Algorithm 2 shows the best per-
formance in a micro-benchmark, where it is 27% faster than
Algorithm 4. However, Algorithm 2 is not the best choice for
the FT application, where FT’s runtime becomes 8% slower
than choosing Algorithm 4. On Discoverer, however, the best
algorithms in the micro-benchmark and application are the
same, but the ratios of runtimes of different algorithms are
still different. For example, in the Alltoall micro-benchmark,
there is a 40% difference between Algorithms 1 and 2, while
this difference is only 8% in the FT runtime.

Overall, the runtime trend of the fastest Alltoall algorithms
is inconsistent across different machines due to changing
runtime ratios of the algorithms. Consequently, the selection
logic for MPI collective algorithms should not rely solely on
micro-benchmarking with time-synchronized processes.

To understand why MPI_Alltoall algorithms perform
differently in a micro-benchmark without process arrival
imbalance compared to their performance within an appli-
cation, we replicate previous experiments. We subject the
MPI_Alltoall algorithms to various process arrival pat-
terns, including both artificial ones and those derived from
tracing FT in each cluster (FT-Scenario). The maximum
process skew used to generate the artificial patterns is deter-
mined by the highest skew observed during tracing on each
parallel machine.

Figure 8 present the runtimes of the Alltoall algorithms
when being exposed to different process arrival patterns on
the three different machines. The values in the heatmaps are
normalized to the smallest value in each row, meaning that
the fastest algorithm for that delay scenario has a normalized
value of 1. In parentheses, the absolute runtimes of the

algorithms based on the last delay metric are shown. In the
last row, we provide the average performance ratio of each
algorithm across different arrival patterns as an indicator of
an algorithm’s robustness against process arrival imbalances.
The No-delay arrival pattern is equal to running the Alltoall
micro-benchmarks in Figure 7.

As shown in Figure 8a, in the No-delay scenario, Algo-
rithms 1 and 4 are the optimal choices, with Algorithm 3
being approximately 4.6 times slower than these. Conversely,
when process imbalance is present, Algorithms 1 and 4 are
not the fastest. Specifically, in the Descending scenario,
Algorithm 4 performs about 16 times slower than in the No-
delay case. From this figure, it is evident that Algorithms 1
and 4 have inferior performance for most of the arrival patterns
except for the No-Delay case. Therefore, selecting these
two algorithms proves suboptimal for FT, as demonstrated in
Figure 7a. This highlights why the fastest algorithm in a micro-
benchmark may not be the quickest in application settings
due to process arrival imbalances. In addition, the Average
normalized values of each column (last row) serve as a
useful indicator for algorithm selection, showing performance
consistency across all patterns. Interestingly, these averaged
values closely correlate with the runtimes observed in FT using
these algorithms, as illustrated in Figure 7a.

Figure 8b shows the same experiment for Galileo100,
where we can observe a similar effect. As in Figure 7b,
Algorithm 2 is the fastest in the No-delay scenario, in
which it is more than 30% faster than Algorithms 1 and 4.
When algorithms are exposed to process imbalance, e.g., the
FT-Scenario, Algorithms 1 and 4 become around 16%
faster than Algorithm 2. On Discoverer (Figure 8), the fastest
algorithm in both the No-delay and FT-scenario cases
is the same, and overall, Algorithm 2 demonstrates the most
robust performance across all arrival patterns. This robustness
explains why Algorithm 2 is the fastest in both the micro-
benchmark and FT, as shown in Figure 7c.

Overall, the real-world arrival pattern of the application
(FT-Scenario) enables us to accurately predict the best-
performing algorithm within the application. Additionally, our
proposed micro-benchmarking technique assists in identifying
the most robust algorithm for each data size and machine.

C. Optimize for Robustness against Arrival Patterns

The final question to be addressed is how to perform
algorithm selection in practice. In the preceding sections,
we demonstrated that the runtime of MPI_Alltoall with
the FT application significantly relies on the process arrival
pattern. However, in this analysis, we utilized a pre-recorded
arrival pattern trace. In real-world scenarios, tracing each ap-
plication before deciding which collective algorithm to use is
impractical. Therefore, we require an approach for optimizing
collective algorithms in general cases.

Our approach to optimizing collective selection involves
choosing the most robust algorithm against artificially created
arrival patterns. Our rationale is as follows: an algorithm that
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Fig. 8: Normalized runtimes of Alltoall algorithms on Hydra, Galileo100, and Discoverer with message size 32 768B and
32× 32 processes. The reported runtimes are based on the last delay metric (d̂).

consistently performs well across multiple arrival patterns will
likely yield satisfactory results across various applications.

We show an example in Figure 9, where we compare the
actual runtime of FT (the light blue bars) versus the expected
(predicted) runtime of FT using the No-delay or the Avg
delay runtimes on Hydra. We profiled FT with the mpisee
profiler [26] and extracted the computation time. Our predicted
runtimes (orange and dark blue bars) are then based on the sum
of the computation time and the expected time for executing
MPI_Alltoall in both scenarios, i.e., No-delay and Avg
(excl. FT-Sce.) (refer to Figure 8). Due to the regular
system noise, there is a small variation between the runtimes
in the previous figures and Figure 9. It is evident that the
Expected FT Runtime, based on the No-delay case, does
not align with the Actual FT Runtime. As demonstrated with
Algorithm 2, the discrepancy in performance stems from its re-
sponse to process arrival patterns. Consequently, Algorithm 2
consumes more time in the actual application than in the
micro-benchmark, resulting in a longer than anticipated FT
runtime. If the average runtime of Algorithm 2, taking into
account the various process arrival patterns as illustrated in
Figure 8, had been used, the Expected FT Runtime would
indeed match the Actual FT Runtime.
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Fig. 9: The actual runtime of FT versus its imprecisely
projected runtimes (when processes enter collectives simulta-
neously, the No-delay case, and the average case) on Hydra
with 32× 32 processes.

VI. RELATED WORK

The problem of collective algorithm selection has been
explored using various approaches and considering different
parameters [1], [2], [3], [4], [5], [6], [27]. Process arrival
times have been identified as an influential parameter in
this selection process [10], [14], [28]. Research on process



arrival imbalances has explored system and architectural noise,
diverse workloads [9], [29], synchronization points, and al-
gorithmic properties [30], [31]. Additionally, current barrier
algorithms and their implementations have been recognized as
contributors to process arrival time imbalances when reaching
collective communications [11], [20].

Faraj et al. [10] were among the first to demonstrate how
arrival patterns affect MPI application performance. They
showed that process arrival times at a collective operation
influence not only the operation itself but also the overall
performance of applications, even when MPI workloads are
balanced. Other researchers have investigated the effect of dif-
ferent process arrival patterns on different collectives such as
Broadcast [32], [28], Alltoall, and Allgather [33], and showed
the deficiency of current algorithms in the presence of process
arrival imbalance for inter-node communications especially
when dealing with large data sizes. Parsons et al. [34] distin-
guished between the inter- versus intra-node arrival imbalance
and tried to improve the performance of MPI collectives in the
presence of imbalanced process arrival times by minimizing
the synchronization delay of the early arriving processes.
Alizadeh et al. [35] proposed an intra-node shared-memory
process arrival pattern-aware Allreduce algorithm that imposes
less data dependency among processes and evaluated the
algorithm with Deep Learning workloads.

Marendić et al. [15] showed having prior knowledge of
process arrival imbalances helps to implement a faster algo-
rithm for collective operations, and since it might be expensive
to achieve such knowledge, they proposed [36] a robust
MPI_Reduce algorithm that dynamically re-balances the
load between the processes regardless of the prior knowledge
of the pattern. Proficz [13], [14] presented an online process
arrival pattern detection, to estimate processes’ arrival time
and their distribution, and introduced optimized Allreduce and
Scatter algorithms for imbalanced process arrival patterns. In
another work [37], they proposed two process arrival pattern-
resilient Allgather algorithms by utilizing an additional back-
ground thread for early data exchange from faster processes.

Widener et al. [38] examined the optimization potential of
non-blocking collectives in noisy environments to mitigate the
impact of process arrival imbalances. They used simulations
to investigate the potential speedup of large-scale applications
when non-blocking collectives are employed instead of block-
ing collectives. By using an idealized model of non-blocking
collectives, they demonstrated that while non-blocking collec-
tives do not automatically mitigate noise effects, they can be
advantageous for certain types of noise, such as those from
checkpoint/restart activities.

VII. CONCLUSIONS

Our work addressed the algorithm selection problem for
MPI collective communication operations in the presence of
process arrival patterns, typically found in real-world ap-
plications. We examined how different arrival patterns af-
fect the performance of collective communication operations,
highlighting their impact on each collective algorithm. In a

simulation study, we showed a significant difference in behav-
ior between different classes of MPI collectives when being
exposed to process arrival patterns. We observed that rooted
collectives, such as MPI_Reduce, have a greater potential
to absorb waiting times caused by process skew compared
to non-rooted collectives, especially MPI_Allreduce. We
conducted a similar analysis using micro-benchmarking in
real-world parallel machines and observed an outcome similar
to the simulation study’s.

We also showed how to enhance the algorithm selection
process by considering process arrival patterns. To that end,
we measured the runtime of collective algorithms for a va-
riety of process arrival patterns and selected the algorithm
that performs best overall across the different scenarios. We
showed how to apply this strategy to the FT application from
the NAS Parallel benchmarks. We implemented a collective
tracing library that reports the processes’ arrival times to
the collectives. Using the tracer, we could record accurate
process arrival times for the FT application and showed that
algorithm selection without considering the process imbalance
may lead to an inefficient choice. We also demonstrated that
the algorithm selected by considering the arrival patterns while
benchmarking does indeed improve the performance of FT.
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profiling for communication and communicator structure,” in IEEE
International Parallel and Distributed Processing Symposium Workshops
(IPDPSW), 2022, pp. 520–529.

[27] S. Hunold, A. Bhatele, G. Bosilca, and P. Knees, “Predicting MPI
collective communication performance using Machine Learning,” in
IEEE International Conference on Cluster Computing (CLUSTER).
IEEE, 2020, pp. 259–269.

[28] A. Ruhela, B. Ramesh, S. Chakraborty, H. Subramoni, J. Hashmi, and
D. Panda, “Leveraging network-level parallelism with multiple process-
endpoints for MPI broadcast,” in IEEE/ACM Third Annual Workshop
on Emerging Parallel and Distributed Runtime Systems and Middleware
(IPDRM). IEEE, 2019, pp. 34–41.

[29] S. Pumma, D. Buono, F. Checconi, X. Que, and W.-c. Feng, “Alleviating
load imbalance in data processing for large-scale Deep Learning,” in
20th IEEE/ACM International Symposium on Cluster, Cloud and Internet
Computing (CCGRID). IEEE, 2020, pp. 262–271.

[30] I. B. Peng, S. Markidis, and E. Laure, “The cost of synchronizing im-
balanced processes in message passing systems,” in IEEE International
Conference on Cluster Computing. IEEE, 2015, pp. 408–417.

[31] Y. Temucin, S. Levy, W. Schonbein, R. Grant, and A. Afsahi, “A
dynamic network-native MPI partitioned aggregation over Infiniband
verbs,” in IEEE International Conference on Cluster Computing (CLUS-
TER). IEEE, 2023.

[32] P. Patarasuk and X. Yuan, “Efficient MPI Bcast across different process
arrival patterns,” in IEEE International Symposium on Parallel and
Distributed Processing. IEEE, 2008, pp. 1–11.

[33] Y. Qian and A. Afsahi, “Process arrival pattern aware Alltoall and
Allgather on Infiniband clusters,” International Journal of Parallel
Programming, vol. 39, pp. 473–493, 2011.

[34] B. S. Parsons and V. S. Pai, “Exploiting process imbalance to improve
MPI collective operations in hierarchical systems,” in Proceedings of
the 29th ACM on International Conference on Supercomputing, 2015,
pp. 57–66.

[35] P. Alizadeh, A. Sojoodi, Y. Hassan Temucin, and A. Afsahi, “Efficient
process arrival pattern aware collective communication for Deep Learn-
ing,” in Proceedings of the 29th European MPI Users’ Group Meeting,
2022, pp. 68–78.

[36] P. Marendic, J. Lemeire, D. Vucinic, and P. Schelkens, “A novel MPI
reduction algorithm resilient to imbalances in process arrival times,” The
Journal of Supercomputing, vol. 72, pp. 1973–2013, 2016.

[37] J. Proficz, “All-gather algorithms resilient to imbalanced process arrival
patterns,” ACM Transactions on Architecture and Code Optimization
(TACO), vol. 18, no. 4, pp. 1–22, 2021.

[38] P. M. Widener, S. Levy, K. B. Ferreira, and T. Hoefler, “On noise and the
performance benefit of nonblocking collectives,” Int. J. High Perform.
Comput. Appl., vol. 30, no. 1, pp. 121–133, 2016.




