
Algorithm Selection of MPI Collectives
Considering System Utilization

Majid Salimi Beni1, Sascha Hunold2, and Biagio Cosenza1

1 Department of Computer Science, University of Salerno, Salerno, Italy
2 Faculty of Informatics, TU Wien, Vienna, Austria

Abstract. MPI collective communications play an important role in
coordinating and exchanging data among parallel processes in high per-
formance computing. Various algorithms exist for implementing MPI col-
lectives, each of which exhibits different characteristics, such as message
overhead, latency, and scalability, which can significantly impact overall
system performance. Therefore, choosing the suitable algorithm for each
collective operation is crucial to achieve optimal performance. In this
paper, we present our experience with MPI collectives algorithm selec-
tion on a large-scale supercomputer and highlight the impact of network
traffic and system workload as well as other previously-investigated pa-
rameters such as message size, communicator size, and network topology.
Our analysis shows that network traffic and system workload can make
the performance of MPI collectives highly variable and, accordingly, im-
pact the algorithm selection strategy.

Keywords: High Performance Computing · MPI · Collectives · Broad-
cast · Algorithm Selection · Tuning.

1 Introduction

MPI (Message Passing Interface) is a widely-used standard for programming
parallel and high performance computing (HPC) systems that allows efficient
communication among distributed processes over the network [2]. MPI collec-
tive communication operations are fundamental building blocks for developing
parallel applications, and a big share of HPC applications’ runtime is spent while
performing collective communications [13].

In recent MPI implementations, several algorithms have been implemented
for each collective operation, each of which owns distinct internal characteristics
such as communication costs and scalability attributes. An efficient algorithm
selection for MPI collectives is crucial in achieving optimal performance and sig-
nificantly impacts the overall scalability, communication overhead, and resource
utilization in a parallel application. Hence, researchers have explored different
parameters that impact the algorithm selection [8, 11]. Considering the net-
work as a shared resource among jobs in supercomputers, network elements are
subject to congestion, degrading performance reproducibility [12]. Collective al-
gorithms, as the main communication primitives may also perform differently

Preprint

Authors' preprint
Not for redistribution
The definitive Version was published at Euro-Par 2022: Parallel Processing Workshops.



2 Salimi Beni et al.

under diverse network conditions since they have distinct strategies for data
transmission and message chunking. Therefore, network traffic is a key factor
affecting the decision-making process for the best algorithm.

In this paper, we first analyze the behavior of different implementations of
MPI_Bcast on a large-scale cluster; and show the impact of network traffic on
each algorithm’s performance. Then, by monitoring the network, we propose a
workload-aware algorithm selection method for MPI collectives that considers
network conditions as well as data and communicator size. In the rest of the
paper, we perform a preliminary analysis in Sect. 2. Related work is presented
in Sect. 3, and Sect. 4 describes the proposed algorithm selection method. A
summary of the current status and future directions are given in Sect. 5.

2 Motivation

Large-scale clusters are usually utilized by many users at the same time, and
several resources, including the network, are shared among them. Sharing the
network with other users can degrade the communication performance of jobs
and make it variable, especially in communication-intensive applications. It has
been shown that collective operations may behave very differently under heavy
network traffic, and their performance can significantly vary from run to run [1,
12].

0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014 0.0016
Latency (s)

Run 1

Run 2

Run 3

1 - basic_linear
2 - chain
3 - pipeline
4 - split_binary_tree
5 - binary_tree
6 - binomial
7 - knomial
8 - scatter_allgather
9 - scatter_allgather_ring

(a)

0 200 400 600 800 1000 1200
Cluster Nodes

Run 1

Run 2

Run 3
All active nodes (with Running status)
Nodes involved in communication
Max nodes allocated by a single user

(b)
Fig. 1: (a) Latency of running all algorithms of MPI_Bcast three times with
512 processes on 16 nodes, allocated across different islands of Marconi100, with
10KB message size. (b) Cluster utilization data for the three runs extracted from
SLURM’s job queue.

The runtimes of the collective communications presented were obtained with
the ReproMPI benchmark [7], and the collective algorithms are adopted from
OpenMPI 4.1. We conducted our analyses on Marconi100 compute cluster [10] at



3. RELATED WORK AND BACKGROUND 3

the CINECA supercomputing center, which characterizes 980 nodes divided into
4 groups called islands. Each node comes with two 16 cores of IBM POWER9
AC922.

Figure 1a shows the latency of running different algorithms of MPI_Bcast
three times on three different days. In each run, the runtime of each algorithm
was measured, one after the other. Although the message size and process count
are the same in this figure for the three runs, their behavior changes. First, there
is high variability between runs: in run 3, algorithm 1 is 25x faster than in run
1. Second, the best algorithm is not the same for the three runs: algorithms
4, 3, and 8 are the best for the three runs, consecutively. Figure 1b presents
the job scheduler’s monitored data before the execution of the benchmark. We
can observe that when there are users that allocated many nodes for their jobs
or more nodes are allocated by single jobs (more nodes are involved in the
communication), the latency of our benchmark is higher and the best algorithm
changes.

From Figure 1, it is clear that another factor is impacting the algorithm
selection besides message size and the number of processes. Since the node al-
location strategy has been the same for the three runs and nodes are allocated
on different islands of the cluster in all runs, the only changing factor is the
network condition and cluster utilization. In this paper, we quantify the network
traffic between the currently allocated nodes and show which algorithms perform
better under different network traffic.

3 Related Work and Background

Since the collective algorithm selection can highly improve the performance of
MPI collectives and impacts communication-intensive applications, this problem
has been investigated and several algorithms are tied with some MPI implemen-
tations, such as OpenMPI and IntelMPI. OpenMPI uses a hard-coded decision
tree and chooses the best algorithm based on the communicator and message
size. IntelMPI, on the other hand, performs an exhaustive search to find the best
algorithm for a given set of message sizes and nodes. Other than MPI imple-
mentations, recent work has investigated algorithm selection for MPI collectives.
Researchers have focused on online [8], offline [3], machine learning [14, 5, 15],
and modelling-based [11, 6] approaches to facilitate the algorithm selection pro-
cess.

Apart from the methodology of choosing the best algorithm, current works
consider several parameters that can impact this process. These factors in-
clude message size, process count, network topology, and available hardware
resources [9]. The message size determines whether a certain algorithm, such as
a binomial tree or a ring-based algorithm, is more suitable for small or large
messages, respectively. The process count affects the algorithm’s scalability, en-
suring efficient communication considering the number of processes involved.
Network topology helps determine whether a hierarchical or non-blocking algo-
rithm would be more suitable for minimizing communication overhead. Finally,



4 Salimi Beni et al.

20 40 60 80 100
HP2P Average Latency (us)

0

200

400

600

800

1000

1200

1400

Bc
as

t L
at

en
cy

 (u
s)

Correlation: 0.92

1 - basic_linear
2 - chain
3 - pipeline
4 - split_binary_tree
5 - binary_tree
6 - binomial
7 - knomial
8 - scatter_allgather
9 - scatter_allgather_ring

(a) 100 B

20 40 60 80 100
HP2P Average Latency (us)

0

200

400

600

800

1000

1200

1400

1600

Bc
as

t L
at

en
cy

 (u
s)

Correlation: 0.92

1 - basic_linear
2 - chain
3 - pipeline
4 - split_binary_tree
5 - binary_tree
6 - binomial
7 - knomial
8 - scatter_allgather
9 - scatter_allgather_ring

(b) 10 KB

Fig. 2: The correlation between latencies of HP2P and Bcast

considering the available hardware resources, such as specialized communication
hardware or network features, can guide the selection of algorithms optimized
for specific architectures.

When running MPI jobs on supercomputers, selecting the best algorithm
while ignoring the network traffic can lead to a non-optimal algorithm selection
since the algorithms may perform differently whilst operating on a network with
changing background traffic. Despite the above-mentioned parameters’ impact
on collectives algorithm selection, to the best of our knowledge, the literature
does not investigate network traffic’s effect.

4 Workload-Aware Algorithm Selection

In this section, we provide our preliminary results about the impact of network
traffic on algorithm selection. In order to show the impact of network traffic
on the performance variability of MPI collective algorithms, we use the HP2P
benchmark [4] that measures the peer-to-peer latency and bandwidth between
the pairs by exchanging asynchronous messages. In our experiments, and before
running the main benchmark, we run HP2P for 1000 iterations with 4KB and
monitor the network status.

Figure 2 shows the latency of different algorithms of Broadcast on 512 pro-
cesses for two different message sizes correlated with HP2P’s latency. Each set



5. SUMMARY 5

40 45 50 55
HP2P Average Latency (us)

200

250

300

350

400

450

500

550

Bc
as

t L
at

en
cy

 (u
s)

pipeline
pipeline Regression
knomial
knomial Regression

Fig. 3: The performance distribution of Pipeline and Knomial between the range
of 35 to 60 us.

of algorithms is executed once, one after the other, and HP2P measures the la-
tency before running each set. The figure includes 100 series of runs executed
on different days and hours of the days, three runs per day. For the two sizes,
the latencies of HP2P and Broadcast are highly correlated (92 percent), and it
is possible to accurately estimate the execution time of the main benchmark by
quickly checking the network status before its execution. On top of that, when
the network is congested, the different algorithms perform differently and deliver
various performances. Indicating that first, the network traffic is impacting algo-
rithms performance, and second, the right algorithm selection in higher network
traffic can highly improve the communication performance.

To highlight network traffic’s impact on the algorithms, in Figure 3, we focus
on a subset of runs between 35-60 (average cases) of Figure 2a. As shown for this
subset, on average, Pipeline has shown a higher performance (around 15% on
average) than Knomial (to which the Default algorithm is mapped). However,
in cases where the HP2P average latency was found to be smaller than 35, the
average-best algorithm is a different one. Therefore, for each range of network
traffic, different algorithms have diverse behavior, and the best algorithm may
change.

5 Summary

In this work, we highlighted the impact of network traffic on the algorithm
selection of MPI collectives. We proposed a workload-aware algorithm selection
method for MPI collectives that monitors the network traffic and chooses the
best algorithm according to the network traffic between the allocated nodes. For
future work, we plan to carry out the following activities:

– Collecting data from the job scheduler as well as other microbenchmarks to
better characterize the cluster’s workload and network utilization.

– Combining the statistical with regression and machine learning methods to
provide a more accurate algorithm selector for MPI collectives and then
automate the selection process.



6 Salimi Beni et al.

References

[1] Majid Salimi Beni and Biagio Cosenza. “An Analysis of Performance Variability
on Dragonfly+ topology”. In: 2022 IEEE International Conference on Cluster
Computing (CLUSTER). IEEE. 2022, pp. 500–501.

[2] Sudheer Chunduri, Scott Parker, Pavan Balaji, Kevin Harms, and Kalyan Ku-
maran. “Characterization of mpi usage on a production supercomputer”. In:
SC18: International Conference for High Performance Computing, Networking,
Storage and Analysis. IEEE. 2018, pp. 386–400.

[3] Ahmad Faraj, Xin Yuan, and David Lowenthal. “STAR-MPI: self tuned adap-
tive routines for MPI collective operations”. In: Proceedings of the 20th annual
international conference on Supercomputing. 2006, pp. 199–208.

[4] GitHub - cea-hpc/hp2p: Heavy Peer To Peer: a MPI based benchmark for network
diagnostic. https://github.com/cea-hpc/hp2p. [Accessed 15-May-2023].

[5] Sascha Hunold, Abhinav Bhatele, George Bosilca, and Peter Knees. “Predicting
MPI collective communication performance using machine learning”. In: 2020
IEEE International Conference on Cluster Computing (CLUSTER). IEEE. 2020,
pp. 259–269.

[6] Sascha Hunold and Alexandra Carpen-Amarie. “Autotuning MPI collectives us-
ing performance guidelines”. In: Proceedings of the International Conference on
High Performance Computing in Asia-Pacific Region. 2018, pp. 64–74.

[7] Sascha Hunold and Alexandra Carpen-Amarie. “Reproducible MPI benchmark-
ing is still not as easy as you think”. In: IEEE Transactions on Parallel and
Distributed Systems 27.12 (2016), pp. 3617–3630.

[8] Sascha Hunold and Sebastian Steiner. “OMPICollTune: Autotuning MPI Col-
lectives by Incremental Online Learning”. In: 2022 IEEE/ACM International
Workshop on Performance Modeling, Benchmarking and Simulation of High Per-
formance Computer Systems (PMBS). IEEE. 2022, pp. 123–128.

[9] Wilton Jaciel Loch and Guilherme Piêgas Koslovski. “Sparbit: Towards to a
Logarithmic-Cost and Data Locality-Aware MPI Allgather Algorithm”. In: Jour-
nal of Grid Computing 21.2 (2023), p. 18.

[10] Marconi100, The new accelerated system. [Accessed 15-May-2023]. url: https:
//www.hpc.cineca.it/hardware/marconi100.

[11] Emin Nuriyev, Juan-Antonio Rico-Gallego, and Alexey Lastovetsky. “Model-
based selection of optimal MPI broadcast algorithms for multi-core clusters”.
In: Journal of Parallel and Distributed Computing 165 (2022), pp. 1–16.

[12] Majid Salimi Beni and Biagio Cosenza. “An analysis of long-tailed network la-
tency distribution and background traffic on dragonfly+”. In: Benchmarking,
Measuring, and Optimizing. LNCS, Springer, 2022.

[13] Majid Salimi Beni, Luigi Crisci, and Biagio Cosenza. “EMPI: Enhanced Message
Passing Interface in Modern C++”. In: 2023 23rd IEEE International Symposium
on Cluster, Cloud and Internet Computing (CCGrid). IEEE. 2023, pp. 141–153.

[14] Michael Wilkins, Yanfei Guo, Rajeev Thakur, Peter Dinda, and Nikos Hardavel-
las. “ACCLAiM: Advancing the Practicality of MPI Collective Communication
Autotuning Using Machine Learning”. In: 2022 IEEE International Conference
on Cluster Computing (CLUSTER). IEEE. 2022, pp. 161–171.

[15] Michael Wilkins, Yanfei Guo, Rajeev Thakur, Nikos Hardavellas, Peter Dinda,
and Min Si. “A FACT-based approach: Making machine learning collective auto-
tuning feasible on exascale systems”. In: 2021 Workshop on Exascale MPI (Ex-
aMPI). IEEE. 2021, pp. 36–45.




