
EMPI: Enhanced Message Passing

Interface in Modern C++

Majid Salimi Beni, Luigi Crisci and Biagio Cosenza

The 23rd International Symposium on Cluster, Cloud and Internet Computing (CCGrid 2023)

Bangalore, India

Department of Computer Science

University of Salerno, Salerno, Italy

msalimibeni@unisa.it

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Outline

❑ MPI and Modern C++

❑ EMPI (Message Passing Interface)

❑ EMPI Semantics:

❑ Program Context

❑ Message Group

❑ Implicit / Explicit wait

❑ EMPI’s Runtime Check Reduction

❑ Customized OpenMPI

❑ Constant Specialization

❑ EMPI vs MPI: a Showcase

❑ Performance Evaluation

❑ Microbenchmarks

❑ Applications

❑ Conclusion and Future Work

2

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023 3

Message Passing Interface vs Modern C++

❑ MPI

❑ Poor programmability

❑ Old-fashioned C-based

❑ Doesn’t use modern language paradigms

❑ Error-prone interface

❑ Too many parameters

❑ Lacking a matching wait for asynchronous calls

❑ Unmatched wait

❑ Data type mismatches

❑ No Init/Finalize

MPI’s interface is holding it back!

❑ Modern C++

❑ High productivity

❑ Memory management

❑ High performance

❑ Many features

❑ Template Metaprogramming

❑ (Standard) library features

❑ RAII, SFINAE, CTAD, Concepts,

Lambda functions, Constraints,

etc.

MPI_Send(to:1, type=MPI_INT)

Rank 0

MPI_Recv(from:0, type=MPI_FLOAT)

Rank 0

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

OpenMPI abstraction layer architecture EMPI abstraction layer architecture

Enhanced Message Passing Interface (EMPI)

❑ Exploits modern C++ features

❑ Mitigates programming errors

❑ Delivers competitive performance

❑ Unlike the state-of-the-art (e.g. MPL[1]), it’s not just a C++ wrapper for MPI

❑ Directly coupled with a customized OpenMPI interface

❑ Can directly interact with layers underneath

❑ Skips some runtime checks in MPI calls

4

[1] Sayan Ghosh, Clara Alsobrooks, Martin Rufenacht, Anthony Skjellum, Purushotham V Bangalore, and Andrew Lumsdaine. “Towards modern C++ language support for MPI”. In: 2021 Workshop on Exascale MPI

(ExaMPI). IEEE. 2021, pp. 27–35.

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

EMPI Semantics: Program Context, Message Group

❑ Program Context

❑ Replaces MPI_Init()and MPI_Finalize()

❑ Uses C++ RAII

5

❑ Message Group

❑ Communications with the same communicator

❑ Enables constant specialization

❑ Contains communications that have some parameters in common

✓ Forgetting to put MPI Init and

MPI Finalize

✓ Minimizes the risk of leaking

resources

✓ Reduces parameters passed to

each call

✓ Type mismatch

✓ Invalid argument types

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

EMPI Semantics: Implicit and Explicit wait

❑ Implicit Wait

❑ A wait_all()is called automatically at the end of the lambda

6

❑ Explicit Wait and Automatic Request Handling

❑ Automatically handles the request objects in a request pool

✓ Ensures not having missing

wait

✓ Prevents double request usage

✓ Minimizes the overhead of

creating and deleting multiple

requests

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

EMPI Runtime Check Reduction

❑ MPI communication primitives:

❑ Checks + Communication

❑ These checks are to control:

❑ If data type, message size, and

communicator are defined

❑ Required buffers are accessible

❑ If parameters are valid values

❑ Some time is spent while doing checks!

❑ More considerable for small messages

❑ Affects applications dealing with many

small messages (e.g., Stencil)

❑ Can we reduce function call latency?

❑ Performing them statically

7

Percentages of checks to the overall time taken by different
OMPI function invocations.

Message Group Constant Specialization

+

Customized OMPI

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Customized OpenMPI for Check reduction

❑ Each communication primitive has a corresponding unchecked version

❑ Delivers the same functionality as the OpenMPI function

❑ Skips some of the runtime checks

MPI_Send() --> Unchecked_MPI_Send()

8

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Customized OpenMPI for Check reduction

9

…

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Message Group Constant Specialization

❑ In MPI, A group of communications often

use the same parameters

❑ Data type, size, tag, etc.

❑ We put them within one message group

❑ Constant Specialization

❑ Constants whose values can be set dynamically

during the execution of the program

10

❑ Unchecked primitives (Customized OMPI)

❑ We skip some of the checks in each message group

❑ For the constant parameters

❑ We perform them in the constructor of each message group only once

Send/Recv are mapped to

Unchecked functions

EMPI example:

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

EMPI vs MPI: a Showcase

11

MPI ping/pong example:

EMPI ping/pong example: Communicator is the

same for all the

communications within

this Message Group

Constant for the message

group communications
We have fewer

parameters now

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Performance Evaluation - Microbenchmarks

12

[1] Sayan Ghosh, Clara Alsobrooks, Martin Rufenacht, Anthony Skjellum, Purushotham V Bangalore, and Andrew Lumsdaine. “Towards modern C++ language support for MPI”. In: 2021 Workshop on Exascale

MPI (ExaMPI). IEEE. 2021, pp. 27–35.

❑ EMPI shows very competitive performance with vanilla OpenMPI

❑ EMPI shows higher performance than MPL[1] (the state of the art)

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Performance Evaluation - Applications

Vibrating String mini-app

13

LULESH

❑ Vibrating String

❑ Strong scaling on up to 1024 processes

❑ Competitive performance with OpenMPI

❑ Better performance than the State of the art

21% 8%

❑ LULESH

❑ Weak scaling on up to 1000 processes

❑ EMPI is performing even better than OpenMPI

❑ Iteratively sends small messages

❑ The same size, type, and communicator

By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023

Conclusion and Future Work

14

❑ EMPI

❑ Improves programmability thanks to C++ features

❑ Less error-prone codes

❑ Decreases the code’s complexity

❑ Competitive performance with OpenMPI

❑ Higher performance than state of the art

❑ EMPI has passed the Artifact Evaluation

❑ Artifact: https://doi.org/10.5281/zenodo.7727977

❑ Ongoing project: https://github.com/unisa-hpc/empi

❑ Future Directions

❑ Providing support for more MPI features

❑ Handling complex data types

❑ Exploiting latest C++ features

❑ GPU support

EMPI: Enhanced Message Passing

Interface in Modern C++

Majid Salimi Beni, Luigi Crisci, Biagio

Cosenza

The 23rd International Symposium on Cluster, Cloud

and Internet Computing (CCGrid 2023)

Bangalore, India

May 1-4, 2022

Reach me at:

msalimibeni@unisa.it

https://doi.org/10.5281/zenodo.7727977
https://github.com/unisa-hpc/empi
mailto:msalimibeni@unisa.it

	Slide 1: EMPI: Enhanced Message Passing Interface in Modern C++
	Slide 2: Outline
	Slide 3: Message Passing Interface vs Modern C++
	Slide 4: Enhanced Message Passing Interface (EMPI)
	Slide 5: EMPI Semantics: Program Context, Message Group
	Slide 6: EMPI Semantics: Implicit and Explicit wait
	Slide 7: EMPI Runtime Check Reduction
	Slide 8: Customized OpenMPI for Check reduction
	Slide 9: Customized OpenMPI for Check reduction
	Slide 10: Message Group Constant Specialization
	Slide 11: EMPI vs MPI: a Showcase
	Slide 12: Performance Evaluation - Microbenchmarks
	Slide 13: Performance Evaluation - Applications
	Slide 14: Conclusion and Future Work

