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Outline

❑ MPI and Modern C++

❑ EMPI (Message Passing Interface)

❑ EMPI Semantics: 

❑ Program Context

❑ Message Group

❑ Implicit / Explicit wait

❑ EMPI’s Runtime Check Reduction

❑ Customized OpenMPI

❑ Constant Specialization

❑ EMPI vs MPI: a Showcase

❑ Performance Evaluation

❑ Microbenchmarks

❑ Applications

❑ Conclusion and Future Work

2



By: Majid Salimi BeniEMPI: Enhanced Message Passing Interface in Modern C++ CCGRID 2023 3

Message Passing Interface vs Modern C++

❑ MPI

❑ Poor programmability

❑ Old-fashioned C-based

❑ Doesn’t use modern language paradigms

❑ Error-prone interface

❑ Too many parameters 

❑ Lacking a matching wait for asynchronous calls

❑ Unmatched wait

❑ Data type mismatches

❑ No Init/Finalize

MPI’s interface is holding it back!

❑ Modern C++

❑ High productivity

❑ Memory management

❑ High performance

❑ Many features

❑ Template Metaprogramming

❑ (Standard) library features

❑ RAII, SFINAE, CTAD, Concepts, 

Lambda functions, Constraints, 

etc.

MPI_Send(to:1, type=MPI_INT)

Rank 0

MPI_Recv(from:0, type=MPI_FLOAT)

Rank 0
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OpenMPI abstraction layer architecture EMPI abstraction layer architecture

Enhanced Message Passing Interface (EMPI)

❑ Exploits modern C++ features

❑ Mitigates programming errors

❑ Delivers competitive performance

❑ Unlike the state-of-the-art (e.g. MPL[1]), it’s not just a C++ wrapper for MPI

❑ Directly coupled with a customized OpenMPI interface 

❑ Can directly interact with layers underneath

❑ Skips some runtime checks in MPI calls
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[1] Sayan Ghosh, Clara Alsobrooks, Martin Rufenacht, Anthony Skjellum, Purushotham V Bangalore, and Andrew Lumsdaine. “Towards modern C++ language support for MPI”. In: 2021 Workshop on Exascale MPI 

(ExaMPI). IEEE. 2021, pp. 27–35.
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EMPI Semantics: Program Context, Message Group

❑ Program Context

❑ Replaces MPI_Init()and MPI_Finalize()

❑ Uses C++ RAII
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❑ Message Group

❑ Communications with the same communicator 

❑ Enables constant specialization

❑ Contains communications that have some parameters in common

✓ Forgetting to put MPI Init and 

MPI Finalize

✓ Minimizes the risk of leaking 

resources

✓ Reduces parameters passed to 

each call

✓ Type mismatch

✓ Invalid argument types
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EMPI Semantics: Implicit and Explicit wait

❑ Implicit Wait

❑ A wait_all()is called automatically at the end of the lambda
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❑ Explicit Wait and Automatic Request Handling

❑ Automatically handles the request objects in a request pool

✓ Ensures not having missing 

wait

✓ Prevents double request usage

✓ Minimizes the overhead of 

creating and deleting multiple 

requests
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EMPI Runtime Check Reduction

❑ MPI communication primitives:

❑ Checks +  Communication

❑ These checks are to control:

❑ If data type, message size, and 

communicator are defined

❑ Required buffers are accessible

❑ If parameters are valid values

❑  Some time is spent while doing checks!

❑ More considerable for small messages

❑ Affects applications dealing with many 

small messages (e.g., Stencil)

❑  Can we reduce function call latency?

❑ Performing them statically
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Percentages of checks to the overall time taken by different 
OMPI function invocations.

Message Group Constant Specialization 

+ 

Customized OMPI
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Customized OpenMPI for Check reduction

❑ Each communication primitive has a corresponding unchecked version

❑ Delivers the same functionality as the OpenMPI function 

❑ Skips some of the runtime checks

MPI_Send() --> Unchecked_MPI_Send()
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Customized OpenMPI for Check reduction
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…
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Message Group Constant Specialization

❑ In MPI, A group of communications often 

use the same parameters

❑ Data type, size, tag, etc.

❑ We put them within one message group

❑ Constant Specialization

❑ Constants whose values can be set dynamically 

during the execution of the program
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❑ Unchecked primitives (Customized OMPI)

❑ We skip some of the checks in each message group 

❑ For the constant parameters

❑ We perform them in the constructor of each message group only once 

Send/Recv are mapped to 

Unchecked functions

EMPI example:
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EMPI vs MPI: a Showcase
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MPI ping/pong example:

EMPI ping/pong example: Communicator is the 

same for all the 

communications within 

this Message Group

Constant for the message 

group communications
We have fewer 

parameters now
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Performance Evaluation - Microbenchmarks
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[1] Sayan Ghosh, Clara Alsobrooks, Martin Rufenacht, Anthony Skjellum, Purushotham V Bangalore, and Andrew Lumsdaine. “Towards modern C++ language support for MPI”. In: 2021 Workshop on Exascale

MPI (ExaMPI). IEEE. 2021, pp. 27–35.

❑ EMPI shows very competitive performance with vanilla OpenMPI

❑ EMPI shows higher performance than MPL[1] (the state of the art)
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Performance Evaluation - Applications

Vibrating String mini-app
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LULESH

❑ Vibrating String

❑ Strong scaling on up to 1024 processes

❑ Competitive performance with OpenMPI

❑ Better performance than the State of the art

21% 8%

❑ LULESH

❑ Weak scaling on up to 1000 processes

❑ EMPI is performing even better than OpenMPI

❑ Iteratively sends small messages 

❑ The same size, type, and communicator
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Conclusion and Future Work
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❑ EMPI

❑ Improves programmability thanks to C++ features

❑ Less error-prone codes

❑ Decreases the code’s complexity

❑ Competitive performance with OpenMPI

❑ Higher performance than state of the art

❑ EMPI has passed the Artifact Evaluation

❑ Artifact: https://doi.org/10.5281/zenodo.7727977

❑ Ongoing project: https://github.com/unisa-hpc/empi

❑ Future Directions

❑ Providing support for more MPI features

❑ Handling complex data types 

❑ Exploiting latest C++ features

❑ GPU support
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